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Abstract—The role played by column representatives is 

expanded in the study of the properties exhibited by the 

trajectories of arbitrary switching linear systems. Previous 

contributions on the employment of column representatives 

focused on positive dynamics and linear copositive Lyapunov 

functions associated with exponentially contractive positive sets 

that are invariant with respect to such dynamics. Our 

approach refers to arbitrary dynamics and invariant sets with 

general form for time-dependence. We address both discrete- 

and continuous-time cases. Our key finding is that the 

existence of such invariant sets is fully characterized (if and 

only if) by the Schur (Hurwitz respectively) stability of the 

column representatives corresponding to a matrix set 

adequately built from the original system matrices. Our 

mathematical developments are illustrated by a numerical 

example. These developments incorporate the previous 

contributions mentioned above as particular cases. 

Keywords—Switching systems, column representatives, time-

dependent invariant sets. 

I.  INTRODUCTION  

A. Research framework  
The paper develops a deeper insight into the properties of 

the trajectories of arbitrary switching linear systems, by 
enhancing the role of an algebraic instrument based on 
matrix representatives. The considered dynamics are 
described, in discrete-time, by 
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and, in continuous-time, by 
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where the concrete values of the subscripts ( )t  are given 

by an arbitrarily switching signal : {1,2, , }N  ℤ …  

(discrete-time), respectively : {1, 2,..., }N  ℝ  

(continuous-time). At any moment t, the value ( )t   

selects a matrix from the set (called the set of constituent 
matrices of the switching system) 

  1 2, ,..., n n
N

 A A AA ℝ  (2) 

and activates the constituent subsystem corresponding to  

( )t  , meaning  

 ( 1) ( ), , {1, , }t t t N    x A x ℤ …  (3-DT) 

for discrete-time dynamics, and  

 ( ) ( ), , {1, , }t t t N   x A xɺ ℝ …  (3-CT) 

for discrete-time dynamics.  
In the equation labels, we have introduced the notation 

“DT”, “CT” respectively, as extension for numbering; this is 
an abbreviation for “discrete-time”, and “continuous-time” 
respectively. Our text will preserve the meaning of this 
notation for superscripts attached to some matrices. We will 
also write “X // Y” in place of "X [respectively Y]”, aiming 
to a parallel presentation of several statements that refer to 
similar aspects encountered in discrete- and continuous-time 
dynamics.  

The positive case of arbitrary switching systems  
(1-DT) // (1-CT) has been thoroughly studied by separate 
works, entirely devoted to this case, such as [1]-[7]. In these 
works, the constituent matrices in (2) are non-negative for 
discrete-time systems and essentially non-negative for 
continuous-time systems. One of the key instruments used 
by these approaches is the set of column representatives 
associated with the constituent matrices (2), as briefly 

presented below. For any function :{1, , } {1, , }n N … … , 

consider ( (1), , ( ))n   …  the ordered n-tuple  and 

denote by C  the set of all the n-tuples with elements from 

{1, , }N… . For any C , matrix 

 (1) (:,1) ( ) (:, )[ ] ... [ ] n n
n n 

   A A A ℝ ,  (4) 

is built column-wise from the first column of (1)A  

(denoted by (1) (:,1)[ ]A ), the second column of (2)A  

(denoted by (2) (:,2 )[ ]A ), and so on. Matrix n n


A ℝ  is 

called a column representative of the matrix set A .  

B. Existent results employing the column representatives  
of switching positive systems  

Papers [5] // [1]-[3] show that the Schur // Hurwitz 
stability of all column representatives of the discrete-time 
system (1-DT) // continuous-time system (1-CT) represents 
a necessary and sufficient condition for the existence of 
linear copositive Lyapunov functions 
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associated with system (1-DT) // (1-CT). The positive vector 
0u≫  used in (5) can be computed as a solution to the 

strong linear inequalities  
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 ( ) 0, 1, ,T N  u A I ≪ … , (6-DT) 

in the discrete-time case and 

 0, 1, ,T N  u A ≪ … , (6-CT) 

in the continuous-time case (where the meaning of the 
notations " ", " "≫ ≪  is in accordance with Section II). 

Our papers [4], [6] and [8] expanded the framework 
proposed by the above mentioned articles, by proving the 
equivalence of the following four statements 

(S1) All column representatives A , C , corresponding 

to the set of constituent matrices of system (1-DT) // (1-CT) 
are Schur // Hurwitz stable. 
(S2) The quasi–linear weak inequalities are solvable 

 , 0 1, 0, 1, ,T Tr r N    u A u u≫ …   (7-DT) 

 , 0, 0, 1, ,T Tr r N   u A u u≫ …   (7-CT) 

(S3) There exist linear copositive Lyapunov functions of 
form (5) with the decrease rate r along each non-trivial 
trajectory of system (1-DT) // (1-CT)  

      ( ( 1)) ( ( )), , 0, 0 1U t rU t t r    x x uℤ ≫ , (8-DT) 

0

( ( )) ( ( ))
( ( )) lim ( ( )),

, 0, 0

t
U t U t

D U t rU t

t r












 
 

 ℝ ≫

x x
x x

u

 (8-CT) 

(S4) There exist sets with exponentially-contractive form  
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which are invariant with respect to the trajectories of system 
(1-DT) // (1-CT).  

C. Objectives of the current research  
The objective of the current paper is to enhance the role 

of the column representatives in exploring the trajectory 
properties for switching systems (1-DT) // (1-CT). The 
scenario briefly described by subsection 1.2 is extended by 
considering the following less conservative hypotheses for 
the dynamics: 
 The switching system (1-DT) // (1-CT) may be defined by 
arbitrary constituent matrices (2) (i.e. not only 
nonnegative // essentially nonnegative). 
 The candidates for invariant sets may have arbitrary time 
dependence (i.e. not only exponentially-contractive form) 
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The main contribution consists in proving that the 
invariance of sets (10-DT) // (10-CT) can be characterized, 
by equivalence, via the column representatives of a set of 
matrices, which are adequately built from the constituent 

matrices (2). The results are separately presented for 
discrete-time and continuous-time dynamics. We also show 
that the equivalence between (S1), …, (S4) can be obtained 
as a particular case of the new results, in both discrete-time 
and continuous-time cases. 

Our exposition is organized in the following sections. 
Section II presents the notations and nomenclature used 
throughout the text. Section III and IV develop new results 
for discrete-, and, respectively continuous-time arbitrary 
switching linear systems. Section V illustrates the 
theoretical results corresponding to the continuous-time case 
by a numerical example. Section VI provides some final 
comments on the mathematical significance of the new 
developments.  

II.  NOTATIONS AND NOMENCLATURE 

(Essentially) nonnegative matrices and componentwise 
matrix inequalities [9]  

A rectangular matrix [ ] n m
ijx  X ℝ  is called: 

• nonnegative (notation 0X ) if 0ijx  , 1, ,i n … , 

1, ,j m … ; • positive (notation 0X ≫ ) if 0ijx  , 

1, ,i n … , 1, ,j m … . A square matrix [ ] n n
ijx  X ℝ  

is called essentially nonnegative (positive) if 0ijx  , (

0ijx  ), , 1, ,i j n … , i j .  

If , n mℝX Y , then the componentwise inequality X Y  

( ≫X Y ) means 0 X Y  ( 0 ≫X Y ). 

Use of 1-norm [9] 

Given 1[ ]T n
nx x x ⋯ ℝ  and [ ] n n

ijm  M ℝ , the 

following notations are used.  

• vector norm: 1
1

|| || | |
n

i
i

x


 x ; • induced matrix-norm: 

 1
1

10 1 1

|| ||
|| || sup max | |

|| ||
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j n i
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 

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M

x
;  

• matrix measure corresponding to the matrix norm: 

 1
1

0 1 1,

|| || 1
( ) lim max | |

n

jj ij
j n i i j

m m




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    
  
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 

I M
M . 

Eigenstructure of (essentially) nonnegative matrices [10] 

Let n nM ℝ  be (essentially) nonnegative and denote its 

eigenvalues by ( )i M , 1, ,i n … ,. • If M is nonnegative 

then it has a real eigenvalue ( )PF M  satisfying 

| ( ) | ( )i PF M M , 1,...,i n . • If M is essentially 

nonnegative the it has a real eigenvalue ( )PF M  satisfying 

Re{ ( )} ( )i PF M M , 1,...,i n . • The (essentially) 

nonnegative matrix M has a nonnegative right eigenvector 

( ) 0R w M , satisfying 1|| ( ) || 1R w M  and a nonnegative 

left eigenvector ( ) 0L w M , satisfying 1|| ( ) || 1L w M  that 

correspond to the eigenvalue ( )PF M . • If M is 

(essentially) nonnegative and irreducible (i.e. its associated 

graph is strongly connected) then ( )PF M  is a simple 

eigenvalue and its corresponding right and left eigenvectors 
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are positive ( ) 0Rw M ≫ , ( ) 0Lw M ≫ . (Perron-Frobenius 

eigenstructure).  

III. RESULTS FOR DISCRETE-TIME DYNAMICS 

Starting from the constituent matrices 

 1 2, ,..., N A A AA  (2) that define the dynamics of the 

switching system (1-DT), let us build the set of non-
negative matrices 

 
 DT DT DT DT

1 2

DT

, ,...,

[ ] | [ ] |, , 1, , , 1, ,

N

ij ij i j n N 



  

A A A

A A

A

… …

 (11-DT) 

Consider the column representatives DT
A , C , 

corresponding to the set of nonnegative matrices (11-DT). 

Theorem 1-DT 

There exist sets of form DT ( )X t  (10-DT) that are 

invariant with respect to the arbitrary switching system (1-

DT) if and only if all column representatives DT
A , C , 

of the non-negative matrices DT
A  (11-DT) are Schur 

stable. 

Proof: Necessity: If the set DT ( )X t  (10-DT) is invariant 

with respect to system (1-DT), then it is invariant with 
respect to the trajectories of each subsystem 

( 1) ( )t t x A x , 1, , N  … . We consider the state-space 

vector transformation ( ) ( ) ( )t t ty x , which, from system 

(1-DT), leads to the system defined by the constituent 
subsystems 

 
 1( 1) ( 1) ( ) ( ), ,

1, , .

t t t t t

N





    
   



y A y ℤ

…

  (12-DT) 

The condition 1|| ( ) || 1t x   defining the set DT ( )X t   

(10-DT) means the invariance of the set 1|| || 1y  with 

respect to system (12-DT). This is equivalent to 

 1

1
( 1) ( ) 1, , 1, , .t t t N     

   A ℤ …   (13-DT) 

Let y solve subsystem (12-CT) and let t ℤ . Set 

1|| ( )||t  y . If 0  , then 1 y y  also solves (12-DT) 

and satisfies 1|| ( )|| 1t y . Since the set 1|| || 1y  is positively 

invariant with respect to the considered subsystem (12-DT), 

we have 1|| ( 1) || 1t  y , or, equivalently 1
1|| ( 1) || 1t   y . 

Thus, for any t ℤ , 1 1|| ( 1) || || ( )||t t  y y , i.e. the 

function 1|| ( ) ||ty  is non-increasing along each trajectory of 

subsystem (12-DT). Introduce the notation 
1( ) ( 1) ( )t t t      M A . For arbitrary t ℤ , and 

arbitrary 1, , N  … , there exists a vector 0
ny ℝ , 

0 1|| || 1y , such that 1 0 1|| ( ) || || ( ) ||t t M M y . If 

0( )t y y , then for ( 1) ( ) ( )t t t y M y  we have 

1 1|| ( 1) || || ( ) || 1t t  y y , due to the non-increasing 

monotonicity of the function 1|| ( ) ||ty  along any trajectory 

of subsystem (12-DT). Hence 1 1|| ( )|| || ( 1)|| 1t t   M y  for 

any t ℤ , meaning that inequalities (13-DT) are true. 

By using ( )t  as defined in (10-DT), inequalities (13-DT) 

are further equivalent to 

 

DT

1

( ) ( 1) ( ), , 1, , ,

: , ( ) [ ( ) ( )] ,

T

n T
n

t t t N

t t t

 

 





   

 

A ℤ …

ℤ ℝ …

    

    
  (14-DT) 

which show that the inequalities 

 DT( ) ( 1) ( ), ,T t t t    A Cℤ       (15-DT) 

hold true for all column representatives DT
A , C , of the 

set of nonnegative matrices DT
A  (11-DT).  

Since lim ( )i
t

t


  , 1, ,i n … , we can find a moment 

t ℤ  such that (0) ( )t  , 0 1  , which, together 

with (15-DT) yield the inequalities  

 
DT( ) ( ) (0) ( ),

( ) 0, 0 1, .

tT t t

t









    
  

A

C�≫

    


 (16-DT) 

For any C , the Perron-Frobenius eigenvalue of the 

non-negative matrix DT( )
tT

  A  fulfills the inequality (as 

per [11, Corollary 8.1.29]) 

  DT( ) 1, ,
tT

PF       A C  (17-DT) 

proving that all column representatives DT
A , C , of the 

non-negative matrices DT
A  (11-DT) are Schur stable. 

Sufficiency: The switching positive system (1-DT) with non-

negative constituent matrices DT
A  (11-DT) has invariant 

sets of form DT ( )X t  (9-DT) as per the implication 

(S1)(S4) discussed in Subsection 1.2. This means that the 
switching positive system (1-DT) with the constituent 

matrices DT
A  (11-DT) can serve as a comparison system 

(e.g. see [12]) for the switching system (1-CT) with arbitrary 
constituent matrices A  (2). Therefore, the nonnegative set 

DT ( )X t  (9-DT) is invariant with respect to the 1-norm of 

the trajectories of switching system (1-DT) with arbitrary 
constituent matrices A  (2). Equivalently, the sets of the form 

 1| || diag{ } ||n tr ℝx u x , t ℝ , 0u≫ , 0 1r  , 

are invariant with respect to the trajectories of the switching 
system (1-DT) with arbitrary constituent matrices A  (2). 

These invariant sets can also be described as 

 1| || (1/ ) diag{ } || 1n tr ℝx u x  . In other words, we have 

proven the existence of a set of form DT ( )X t  (10-DT), with 

( ) (1/ )t
i it u r  , 0iu  , 1, ,i n … , 0 1r  , which is 

invariant with respect to switching system (1-DT) with 

arbitrary constituent matrices A  (2). ■ 

Remark 1-DT 
The proof of Sufficiency of Theorem 1-DT uses the 

simplest form for the invariant sets DT ( )X t  (10-DT). It is 

worth sketching a procedure for constructing invariant sets 
with a more general form. If all column representatives 
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DT
A , C , of the set of non-negative matrices DT

A  (11-

DT) are Schur stable, then, for the quasi–linear weak 

inequalities (7-DT) written for DT
A , we can find several 

solutions, as per implication (S1)(S2) discussed in 

Subsection 1.2. For instance, consider the vectors 0k ≫u , 

and the constants 0 1kr  , 1, ,k K … , which solve 

inequalities (7-DT) written for DT
A , and define the vector 

function  

 
1

( ) (1/ ) , 0, 1, ,
K

t
k k k k

k

t c r c k K


   …u .  (18-DT) 

The function ( )t  (18-DT) is a solution to inequalities  

(14-DT) and ( ) diag{ ( )}t t    satisfies inequalities  

(13-DT). Equivalently, the set DT ( )X t  (10-DT) defined by 

1

( ) diag{ (1/ ) }
K

t
k k k

k

t c r


  u  is invariant with respect to 

the trajectories of the switching system (1-DT) with arbitrary 

constituent matrices A  (2). ■ 

Remark 2-DT 

Theorem 1-DT includes the equivalence (S1)(S4) 
discussed in Subsection 1.2 as a particular case. Indeed, 
Theorem 1-DT can be applied to a switching positive system 

(1-DT) with DT
    A A , C , and ( ) diag{(1/ ) }tt r  u , 

0u≫ , 0 1r  . ■ 

IV.  RESULTS FOR CONTINUOUS-TIME DYNAMICS 

Starting from the constituent matrices 

 1 2, , ..., N A A AA  (2) that define the dynamics of 

switching system (1-CT), let us build the set of essentially 
non-negative matrices 

 

 CT CT CT CT
1 2

CT CT

, ,...,

[ ] [ ] ; [ ] | [ ] |, ;

, 1, , , 1, , .

N

ii ii ij ij i j

i j n N

  





  

 

A A A

A A A A

A

… …

 (11-CT) 

Consider the column representatives 
CT ,A   C  

corresponding to the set of essentially nonnegative matrices 
(11-CT). 

Theorem 1-CT 

There exist sets of form CT ( )X t  (10-CT) that are 

invariant with respect to arbitrary switching system (1-CT) 

if and only if all column representatives 
CT ,A   C  of the 

essentially non-negative matrices CT
A  (11-CT) are Hurwitz 

stable. 

Proof: Necessity: If the set CT ( )X t  (10-CT) is invariant 

with respect to system (1-CT), then it is invariant with 

respect to the trajectories of each subsystem ( ) ( )t tx A xɺ  , 

1, , N  … . We consider the state-space vector 

transformation ( ) ( ) ( )t t ty x , which, from system (1-CT), 

leads to the system defined by the constituent subsystems 

 
 1 1( ) ( ) ( ) ( ) ( ) ( ),

, 1, , .

t t t t A t t

t N




             



 

 

y yɺɺ

ℝ …
  (12-CT) 

The condition 1|| ( ) || 1t x  defining the set CT ( )X t   

(10-CT) means the invariance of the set 1|| || 1y  with 

respect to system (12-CT). This is equivalent to 

 
1 1

1( ( ) ( ) ( ) ( )) 0,

, 1, , .

t t t A t

t N




             



 

 

ɺ

ℝ …
  (13-CT) 

Indeed, let 0( , )t t , 1, , N  … , be the transition matrix 

of an arbitrary subsystem (12-CT), which allows writing 

0 0( ) ( , ) ( )t t t ty y , 0t t , 0,t t ℝ . By using the 

simplified notation 1 1( ) ( ) ( ) ( ) ( )t t t t t               M Aɺ  , 

for the transition matrix we have  

   

1

1

1

( , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ),

t t t t

t t t

t t

  

   

  

 

  

  

        

        









   

   

  

O

I M O

ɺ   

where ( )t  denotes a fundamental matrix of the 

considered subsystem (12-CT), satisfying 

( ) ( ) ( )t t t       Mɺ , and 
0

lim ( )





O O . Thus 

 

1
1 1

1
1

1
1 1

|| ( ) || || ( ) ( ) ||

|| ( ) ( ) ( ) ||

|| ( ) || || ( ) ( ) || ,

t t

t t

t t

  

  

  

  

  

  













  

   

  

I M O

I M O

I M O

  

and we can write 

1 11
1

|| ( )|| 1 || ( , ) || 1
|| ( ) ( )||

t t t
t 

 
 


 


   

  
I M

O   

1 1
1

|| ( ) || 1
|| ( ) ( )|| ,

t
t

 





 
 

I M
O  

yielding 

 

1
1

0

|| ( , ) || 1
lim ( ( )),

1, , , .

t t
t

N t

















 


 

M

… ℝ

. (14-CT) 

Let y solve a subsystem (12-CT) and let 0,t t ℝ , 0t t . 

Set 0 1|| ( )||t  y . If 0  , then 1 y y  also solves  

(12-CT) and satisfies 0 1|| ( )|| 1t y . Since the set 1|| || 1y  is 

positively invariant with respect to the considered 

subsystem (12-CT), we have 1|| ( ) || 1t y , or, equivalently 

1
1|| ( ) || 1t  y . Thus, for any 0,t t ℝ , 0t t , 

1 0 1|| ( ) || || ( )||t t y y , i.e the function 1|| ( ) ||ty  is non-

increasing along each trajectory of subsystem (12-CT). 

On the other hand, for arbitrary 0,t t ℝ , 0t t , and 

arbitrary 1, , N  … , there exists a vector 0
ny ℝ , 

0 1|| || 1y , such that 0 1 0 0 1|| ( , ) || || ( , ) ||t t t t      y . If 

0 0( )t y y , then for 0 0( ) ( , ) ( )t t t ty y  we have 

1 0 1|| ( ) || || ( ) || 1t t y y , due to the non-increasing 

monotonicity of the function 1|| ( ) ||ty  along any trajectory 

of subsystem (12-CT). Hence 0 1 1|| ( , )|| || ( )|| 1t t t  y , 
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yielding 1|| ( , ) || 1t t     for any t ℝ  and 0  . 

Inequalities (14-CT) show that 1( ( )) 0t M , meaning 

that inequalities (13-CT) are true. By using ( )t  as defined 

in (10-CT), inequalities (13-CT) are further equivalent to 

 

CT

1

( ) ( ) ( ), , 1, , ,

: , ( ) [ ( ) ( )]

T

n T
n

t t t N

t t t

 

 





   

 

A ɺ ℝ …

ℝ ℝ …

    

    
  (15-CT) 

which show that the inequalities 

 

CT

CT

CT

( )

( ) ( ) ( ),

( ) ( ) ( ),

(0) ( ), , ,
T

T

T

t

t t t

t t t

e t t














   

   

  A

A

A

C

ɺ ℝ

ɺ ℝ

ℝ

    

    

    

  (16-CT) 

hold true for all column representatives CT
A , C , 

corresponding to the set of essentially nonnegative matrices 
CT
A  (11-CT). Any column representative CT , A C  is 

also an essentially nonnegative matrix and 
CT( )T te A  is 

nonnegative, so that the left multiplication of the third form 
of inequalities (16-CT) yields  

CT( )(0) ( )
T te t A     , t ℝ , C . 

Since lim ( )i
t

t


  , 1, ,i n … , we can find a moment 

t ℝ  such that (0) ( )t     , 0 1  , which, together 

with 
CT( ) ( ) (0)

T te t A       allow us to write the inequalities  

 

CT( ) ( ) ( ), ( ) 0,

0 1, .

T te t t t 








  

A

C�

≫    
 (17-CT) 

For any C , the Perron-Frobenius eigenvalue of the non-

negative matrix 
CT( )T te A  fulfills the inequality (as per [11, 

Corollary 8.1.29]) 

  CT( ) 1,
T t

PF e    A
C   (18-CT) 

proving that  CT 0PF  A , C . Equivalently all column 

representatives 
CT
A , C , of the essentially non-negative 

matrices CT
A  (11-CT) are Hurwitz stable. 

Sufficiency: The switching positive system (1-CT) with 

essentially non-negative constituent matrices CT
A  (11-CT) 

has invariant sets of form CT ( )X t  (9-CT) as per the 

implication (S1)(S4) discussed in Subsection 1.2. This 
means that the switching positive system (1-CT) with the 

constituent matrices CT
A  (11-CT) can serve as a 

comparison system (e.g. see [12]) for the switching system 
(1-CT) with arbitrary constituent matrices A  (2). 

Therefore, the nonnegative set CT ( )X t  (9-CT) is invariant 

with respect to the 1-norm of the trajectories of switching 
system (1-CT) with arbitrary constituent matrices A  (2). 

Equivalently, the sets  1| || diag{ } ||n rte ℝx u x , 

t ℝ , 0u≫ , 0r  , are invariant with respect to the 

trajectories of switching system (1-CT) with arbitrary 
constituent matrices A  (2). These invariant sets can also be 

described as  1| || diag{ } || 1n rte ℝx u x . In other 

words, we have proven the existence of a set of form 
CT ( )X t  (10-CT), with ( ) rt

i it u e  , 0iu  , 1, ,i n … , 

0r  , which is invariant with respect to switching system 

(1-CT) with arbitrary constituent matrices A  (2). ■ 

Remark 1-CT 
The proof of Sufficiency of Theorem 1-CT uses the simplest 

form for the invariant sets CT ( )X t (10-CT). It is worth 

sketching a procedure for constructing invariant sets with a 

more general form. If all column representatives 
CT
A , 

C , of the essentially non-negative matrices CT
A   

(11-CT) are Hurwitz stable, then, for the quasi–linear weak 

inequalities (7-CT) written for CT
A , we can find several 

solutions, as per implication (S1)(S2) discussed in 

Subsection 1.2. For instance, consider the vectors 0k ≫u , 

and the constants 0kr  , 1, ,k K … , which solve 

inequalities (7-CT) written for CT
A , and define the vector 

function  

 
1

( ) , 0, 1, ,k
K

r t
k k k

k

t c e c k K


   …u .  (19-CT) 

The function ( )t  (19-CT) is a solution to inequalities  

(15-CT) and ( ) diag{ ( )}t t    satisfies inequalities  

(13-CT). Equivalently, the set CT ( )X t  defined by (10-CT) 

with 
1

( ) diag{ }k
K

r t
k k

k

t c e


  u  is invariant with respect to 

the trajectories of the switching system (1-CT) with arbitrary 
constituent matrices A  (2). ■ 

Remark 2-CT 

Theorem 1-CT includes the equivalence (S1)(S4) 
discussed in Subsection 1.2 as a particular case. Indeed, 
Theorem 1-CT can be applied to a switching positive system 

(1-CT) with 
CT
    A A , C , and ( ) diag{ }rtt e u , 

0u≫ , 0r  . ■ 

V.  EXAMPLE 

Consider an arbitrary switching linear system in 
continuous-time defined by the matrices from the set 

  3 3
1 2,  A AA ℝ , with 

1 2

1 0 0 1 0 0

1/16 1 1 , 1/100 1 1 , (20)

1/100 1/10 1 1/100 1/100 1

    
        
         

A A

 inspired by [7]. In order to apply Theorem 1-CT we build 
the set of essentially non-negative matrices 

 CT CT CT
1 2, A AA , given by (11-CT). The dominant 

eigenvalue of all the column representatives corresponding 

to the set CT
A  is CT

maxmax ( )A  







C

 0.6838 0   , 

therefore all these column representatives are Hurwitz  
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Figure 1. Time dependence of the hyper-axes of the hyper-rhomb defined by   1 1 2 2( ) ( )t c t c t     for  

(a) 1 0.2c   2 0.8c  , (b) 1 0.5c   2 0.5c  , and (c) 1 0.8c   2 0.2c  . 
 

stable. Consequently, Theorem 1-CT implies that there exist 
sets of form (10-CT) that are invariant with respect to 
arbitrary switching system (1-CT)&(20). 
 Indeed, it is easy to test that the vector functions 

0.683
1( ) [0.067  0.224  0.709]T tt e    and 

0.680
2 ( ) [0.274  0.173  0.553]T tt e    satisfy the 

differential inequalities (15-CT). Moreover, any convex 

combination   1 1 2 2 1 1 3( ) ( ) [ ( ), ( ), ( )]Tt c t c t t t t        , 

with 1 2, 0c c  , 1 2 1c c  , also satisfies (15-CT) and can 

be used to define a time-dependent set of form (10-CT)
CT 3

1( ) { | || ( ) || 1}X t t   x xℝ , hyper-rhomb with 

( ) diag{ ( )}t t   , that is flow invariant with respect to the 

trajectories of the arbitrary switching system (1-CT)&(20). 

The set CT ( )X t  is a hyper-rhomb; the time-dependence of 

the hyper-axes ( ) 1/ ( )i it t  , 1, 2,3i  , is presented in 

Figure 1 for the combinations (a) 1 0.2c   2 0.8c  , (b) 

1 0.5c   2 0.5c  , and (c) 1 0.8c   2 0.2c  . 

VI.  CONCLUSIONS 

The paper enlarges the mathematical framework that 
exploits column representatives as an instrument for the 
qualitative analysis of the arbitrary switching linear systems. 
The expansion refers to the connections between the 
algebraic properties of the column representatives and the 
invariance properties of the switching system trajectories. 
Thus, the paper proves the equivalence between: • the Schur 
(Hurwitz respectively) stability of the column 
representatives corresponding to a matrix set adequately 
built from the original system matrices, • the existence of 
sets with general form time-dependence, which are invariant 
with respect to the switching system trajectories. This 
equivalence includes, as particular cases, several results 
previously reported by separate papers on switching systems 
with positive dynamics. The considered case study offers a 
numerical illustration for the theoretical developments 
corresponding to the continuous-time case.  

REFERENCES 

[1] O. Mason, and R. Shorten, “On linear copositive Lyapunov functions 
and the stability of switched positive linear systems”. IEEE Trans. 
Aut. Control, vol. 52, no. 7, pp.1346-1349, 2007. 

[2] F. Knorn, O. Mason, and R. Shorten. “On copositive linear Lyapunov 
functions for sets of linear positive systems”, Automatica, vol. 45, pp. 
1943-1947, 2009. 

[3] M.M. Moldovan and M.S. Gowda. “On common linear/quadratic 
Lyapunov functions for switched linear systems”, In P. Pardalos, 
Th.M. Rassias and A.A. Khan (Eds.), Nonlinear Analysis and 
Variational Problems, Springer Science+Business Media, pp. 415–
429, 2010. 

[4] O. Pastravanu, M.H. Matcovschi and M. Voicu, “Qualitative analysis 
results for arbitrarily switching positive systems”, Prep. 18th IFAC 
World Congress, pp. 1326-1331, 2011. 

[5] E. Fornasini, and M.E. Valcher. “Stability and stabilizability criteria 
for discrete-time positive switched systems”, IEEE Trans. Aut. 
Control, vol. 57, pp. 1208-1221, 2012. 

[6] O. Pastravanu, and M.H. Matcovschi, “Max-type copositive 
Lyapunov functions for switching positive linear systems”, 
Automatica 50, 3323–3327, 2014. 

[7] F. Blanchini, P. Colaneri and M. E. Valcher, “Switched positive linear 
systems”, Foundations and Trends in Systems and Control, vol. 2, no. 
2, pp.101-273, 2015. 

[8] O. Pastravanu, M.H. Matcovschi and M. Voicu, Row and column 
representativesin qualitative analysis of arbitrary switching positive 
systems, Romanian Journal of Information Science and Technology, 
vol.19, nr. 1-2, pp. 127–136, 2016, 

[9] D.S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, 
Princeton University Press, 2009. 

[10] A. Berman, and R.J. Plemmons. Nonnegative Matrices in the 
Mathematical Sciences, 2ed. SIAM, 1994. 

[11] R.A. Horn, and C.R. Johnson, Matrix Analysis, Cambridge: 
Cambridge University Press, 1985. 

[12] A. Michel, and K. Wang, Qualitative Theory of Dynamical Systems, 
Marcel Dekker, Inc., New York–Bassel–Hong Kong, 1995. 

 

134


